USDA Forest Service
Invasive species - Management
Oceanic islands are good model systems with which to explore factors affecting exotic species diversity. Islands vary in size, topography, substrate type, degree of isolation, native species diversity, history, human population characteristics, and economic development. Moreover, islands are highly vulnerable to exotic species establishment. We used AICc analyses of data on 1132 vascular plant species for 15 countries and 114 islands from the Pacific Island Ecosystems at Risk (PIER) project to examine biological, geographical, and socioeconomic correlates of exotic species richness. PIER provides data on the distribution of naturalized non-native plant species thought to pose environmental or economic risk. We hypothesized that the numbers of PIER-listed species would be positively correlated with island size, habitat diversity, and proximity to major source pools for propagules. Further, we expected numbers of PIER-listed exotic species to be similar among islands in the same country and to be greater where human populations were larger and where economic activity was high. Most species (908) were found on ? 10 islands. Species number was significantly correlated with island and country areas and with native plant species richness. The strongest model revealed by AICc analyses of island data included log (area) and maximum elevation as well as country membership, substrate type, and presence of an airport with paved runway (an index of economic activity). By country, AICc analyses revealed two equivalent models, both of which included log (area) and per capita gross domestic product as well as a measure of population size (either log (population size) or (population density)). Our analyses provide strong evidence of the roles of biogeographic, environmental, and socioeconomic impacts on the distribution and spread of exotic species.
[EL]
PEIN Date Created
PEIN Date Modified
PEIN Notes
Available online
Record id
82804
Publication Date